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 ABSTRACT Cross-domain artificial intelligence (AI) frameworks are the keys to amplify progress in science. 

Cutting edge deep learning methods offer novel opportunities for retrieving, optimizing, and improving different 

data types. AI techniques provide new ways for enhancing and polishing existing models that are used in applied 

sciences. New breakthroughs in generative adversarial neural networks (GANNs/GANs) and deep learning allow 

to drastically increase the quality of diverse graphic samples obtained with research equipment. All these 

innovative approaches can be compounded into a unified academic and technological pipeline that can radically 

elevate and accelerate scientific research and development. The authors analyze a number of successful cases of 

GAN and deep learning applications in applied scientific fields (including observational astronomy, health care, 

materials science, deep fakes, bioinformatics, and typography) and discuss advanced approaches for increasing 

GAN and DL efficiency in terms of performance calibration using modified data samples, algorithmic 

enhancements, and various hybrid methods of optimization. 
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I. INTRODUCTION 
URRENT artificial intelligence technologies such as 

deep learning (DL) and artificial neural networks – AI 

systems inspired by the structure and principles of the human 

brain – become true amplifiers of scientific discovery and 

development. AI helps to speed up experimental simulations, 

gather and process new data, prove brand new theoretical 

hypotheses in many scientific fields. AI is literally relevant 

to any intellectual task [1]. 

Deep learning is one of the machine learning methods 

that is grounded on an artificial neural networks framework 

that can be trained based on supervised and unsupervised 

learning algorithms. Deep learning architectures are 

effectively used in different fields including autonomous 

vehicles, computer vision, natural language processing, 

recommendation services, bioinformatics, medical image 

analysis, and generation of new functional samples, where 

they have shown similar to human experts’ results or even 

outperformed them. The main concept of artificial neural 

networks was inspired by real biological systems. Generative 

adversarial network (GAN) is the implementation of a 

deep/machine unsupervised learning algorithm class that 

represents the architecture of two artificial neural networks 

that compete with each other in a zero-sum game. 

Today’s AI methods show incredibly successful practical 

results at doing science [2-6]. AI systems are used as an 

effective mechanism in diverse scientific fields transforming 

conventional research practices and expediting discoveries. 

The main advantage of AI is that it can outperform humans 

when it comes to processing large amounts of data, detecting 

patterns and abnormalities that human experts could never 

have spotted.  

Fig. 1 demonstrates the integrated liaisons between key 

elements of AI. 

C 



 Oleksandr Striuk et al. / International Journal of Computing, 20(3) 2021, 339-349 

340 VOLUME 20(3), 2021 

 

Figure 1. Interconnections and nesting of artificial 

intelligence systems. 

The driving force that triggered an increased interest in 

the more intense integration of AI into science were massive 

arrays of data accumulated over many years of research and 

the development of high-performance computing platforms 

that were able to process and analyze these data sets. In 

recent years, artificial intelligence systems have made a great 

contribution to the intensification of scientific research. 

II. SCRUTINIZING HEURISTICS OF SUCCESSFUL 
CASES 

This paper is an overview analysis and considers the 

practical aspects of the use of machine learning and GAN in 

the applied fields of science. In particular, observational 

astronomy, health care, materials science and deep fake 

detection have been selected as illustrative examples.  

Cases were selected from the most important areas that 

affect the core scientific research and quality of human life. 

The next sections of the paper analyze the fragmented 

data of efficient research in this area and assess future 

prospects. 

A. GAN METHOD RECOVERS FEATURES IN 
ASTROPHYSICAL IMAGES OF GALAXIES 

Schawinski et al. demonstrated a machine learning method 

that was able to successfully recover elements in 

astronomical images of galaxies [7]. The said ML 

methodology allows to overcome the deconvolution limit 

using higher quality training data sets and makes it possible 

to reconstruct information from poor quality samples by 

successfully building priors [7].  

The Nyquist–Shannon sampling theorem sets limitations 

in terms of removing the effect of the point spread function 

especially when there is noise, sequentially sampled material 

cannot be completely deconvolved without violating the 

theorem postulates [7, 8]. As a workaround for this issue, 

Schawinski et al. applied a generative adversarial neural 

network (GANN/GAN).  

A GAN is a state-of-the-art deep learning algorithm that 

allows two neural networks to contest with each other in the 

form of a zero-sum game. This framework can create 

realistic artificial graphical samples similar and almost 

identical to the images from a training set [9]. 

GAN works on the following principle: the first network, 

the generator, creates samples (candidates), and the second 

network, the discriminator, evaluates them, trying to 

distinguish real from fakes. The generative network tries to 

form a new sample by combining primary samples using 

latent space variables. The discriminator network learns to 

distinguish between real and counterfeit samples. 

Conventional deep learning models are used in GANs as 

components. For example, the discriminator can be 

implemented as a convolutional classifier network. 

The suggested method can drastically improve the 

quality of obtained image samples of galaxies by recovering 

its properties and bypassing the deconvolution constraints 

mentioned above.  

During the experiment the GAN has been trained on a 

data set that included 4,550 graphic samples of nearby 

galaxies in the redshift range 0.01 < z < 0.02 that were taken 

from the Sloan Digital Sky Survey. The results were assessed 

through ten cross-validation iterative cycles. GAN was able 

to restore artificially corrupted image samples with bad 

seeing and high noise levels (compared to the original image) 

and showed results that greatly outperform standard 

deconvolution.  

The results proved the effectiveness of the method in 

restoring important characteristics of celestial phenomena 

and in expanding the range of study of existing astronomical 

data gathered by telescopes [7]. The images clearly show the 

ability of GAN to restore features that cannot be recovered 

using conventional deconvolution techniques. 

Fig. 2 is a graphic illustration of the training process of 

the method described by Schawinski et al. A set of original 

images is the input. Image degradation is achieved by 

blurring, adding noise, and through convolution with a worse 

point spread function. Degraded images are automatically 

generated and used for GAN training. Only the generator is 

used for recovering images during the testing phase. 

However, this technique is not without drawbacks and 

has its limitations. The main constraint is related to the 

limited capacity of the training set that drastically impacts 

the restorative capabilities of the method. Small training data 

results in a bad approximation. A model that is trained on 

such poor data will likely demonstrate low performance due 

to overfitting. As a possible solution, the training sets that 

consist of synthesized simulation images can be considered 

as an additional reinforcement technique in terms of 

learning. 
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Figure 2. Graphic illustration of training process of GAN: (a) data preparation; (b) training of GAN 

B. DEEP LEARNING AND PHOTOMETRIC REDSHIFT 
ESTIMATION 

A. D’Isanto and K. L. Polsterer proposed a new experimental 

deep learning technique the aim of which was developing a 

new method for photometric redshift estimation [10]. The 

suggested approach demonstrates a novel technique for 

estimating PDF (probability density function) for redshifts 

based on imaging data in such a way that ultimately there is 

no need for additional steps of feature-extraction and feature-

selection. The PDF is presented by the following equation 

(1) [10]: 

 

               𝑝(𝑥) = ∑  𝑛
𝑗=1 𝜔𝑗𝒩(𝑥 ∣ 𝜇𝑗, 𝜎𝑗),               (1) 

 

where 𝒩(𝑥 ∣ 𝜇𝑗 , 𝜎𝑗) is a normal distribution, 𝜇𝑗 is a given 

mean, 𝜎𝑗 is standard deviation, 𝑥 is a given value, 𝜔𝑗 is a 

weighting factor of each component (all weights sum to one). 

In order to achieve the objective, the researchers 

combined a deep convolutional network with a mixture 

density network. The evaluation was presented as Gaussian 

mixture models as a representation of the probability density 

functions in the redshift space. As an addition to the 

conventional estimation methods, the continuous ranked 

probability score (CRPS) and the probability integral 

transform (PIT) were implemented as performance criteria. 

The proposed method was capable of predicting redshift 

probability density functions regardless of the type of source 

(e.g., galaxies, stars, quasars) and showed better results that 

were performed by reference techniques and that were 

described in the scientific literature. This deep learning 

method is highly universal and is able to address any kind of 

probabilistic regression problem based on imaging data [10]. 

The reviewed example demonstrates the flexibility and 

versatility of artificial intelligence systems in astrophysical 

research related to the analysis of imaging data. 

C. GALAXY EVOLUTION RESEARCH WITH 
GENERATIVE MODELS 

Generative models demonstrate the potential for processing 

astronomical intelligence in a way that focuses on a data-

driven approach. Kevin Schawinski, M. Dennis Turp, and Ce 

Zhang described a method that applies generative models to 

probe and research hypotheses in astrophysics and other 

scientific fields.  

During the experiment, using a latent space 

representation of the data, the Fader artificial neural network 

has been trained to produce synthesized data for hypothesis 

verification [11].  

The architecture of the Fader network is the 

implementation of the encoder-decoder system with a 

domain adversarial training element that implies researching 

and processing graphical samples in accordance with their 

physical features [12]. The Fader network tries to minimize 

the following objectives (given pairs of graphic samples and 

labels {x, y}) [12]: 

 

ℒ𝑎𝑒 = −
1

𝑚
∑ ∥ 𝐷(𝐸(𝑥), 𝑦) − 𝑥 ∥2

2− 𝜆𝐸log(𝑃(1 −

𝑦 ∣ 𝐸(𝑥))),                             (2) 

 

             ℒ𝑑𝑖𝑠 = −
1

𝑚
∑log(𝑃(𝑦 ∣ 𝐸(𝑥))),               (3) 

 

where 𝑥 represents images, 𝐸(𝑥) is the encoder (neural 

network) input, which is responsible for mapping from the 

image space to a latent representation of fixed dimension 

[12], 𝐷(𝐸(𝑥), 𝑦) is the decoder (a neural network as well), it 

takes attempts to rebuild 𝑥, {𝑥, 𝑦} are binary labels, ℒ𝒶ℯ and 

ℒ𝒹𝒾𝓈 are two loss functions that interact with each other 

through adversarial cooperation. 

The quenching of star formation in galaxies was used as 

an illustration of the effectiveness of the method because this 

process is well described in astrophysical literature. In 

addition to approaches that are based on simulations and 

observations, this method can be useful in exploring 

important astronomical and other celestial phenomena from 

a different perspective [12]. The underlying reason why 

researchers picked this architecture is that the Fader can 

distinguish two data distributions and learn and visualize 

these differences.  

As for the limitations of this approach, it is important to 
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stress that the described method is mainly applicable to test 

hypotheses but not to prove them in a conventional way. 

Also, there is always room for mismatch when it comes to 

the collation of real data and imperfection of training sets and 

network design.  

The proposed method requires domain knowledge 

management by the user since it is not completely 

unmanned. Anyway, the proposed method of applying 

Fader-like generative models in testing hypotheses and 

physical processes modeling showed noteworthy potential in 

astronomy and other scientific fields [12]. 

D.4 SPATIAL-GANS AND SYNTHETIC IMAGING 

Michael J. Smith and James E. Geach focused their research 

endeavor on the problem of the small size of images 

produced by generative adversarial neural networks 

(GAN/GANN, which are mentioned above) and on the 

ability of the framework known as Spatial Generative 

Adversarial Networks (SGANs, designed and described by 

Jetchev et al.) to generate large graphic images, if training 

image samples demonstrate a certain level of periodicity – 

isotropy (cosmological principle) makes deep imaging 

surveys fit the criterion [13, 14]. 

SGAN was trained to produce images resembling the 

eXtreme Deep Field (XDF) – the photo portrait of the 

universe that was assembled by combining 10 years of 

NASA Hubble Space Telescope photographs, which 

contains about 5,500 galaxies even within its smaller field of 

view. As a result, generated images of fake galaxies got a 

high level of fidelity with real samples from the XDF in 

terms of abundance, morphology, magnitude distributions, 

and colors. In this particular example, researchers have 

generated a 7.6-billion pixel ‘generative deep field’ spanning 

1.45 degrees, showing that this approach can be extrapolated 

to other training sets for producing realistic pseudo surveys 

that can be successfully applied in astrophysics and other 

fields [13]. 

Despite some limitations of the proposed method 

(generated images are dependent on the training set; 

researchers couldn’t reach stable learning output with more 

than three photometric bands) it also has undeniable 

advantages. The method is empirically driven because the 

data is used as the model, and it can be applied to generate 

extremely realistic artificial images for the design, 

development, and exploitation of new astronomical surveys. 

For instance, the technique allows assembling large training 

sets for different fractionalization and classification tasks in 

astrophysics [13]. The suggested generative technique 

makes it possible to expand small pieces of information 

retrieved from the early phases of a new survey to a level that 

will be applicable for training deep learning models. 

Described categorization and grouping algorithms can be 

effectively trained on the generated data and be implemented 

towards new data which can lead to expediting the 

processing of data of new surveys. Equation 4 represents a 

schematic architecture of the method [13]: 

 

𝐷𝑅(𝑥) = {
𝑆 (𝐶(𝑥) − 𝔼𝑥𝑓∼𝑄

𝐶(𝑥𝑓))  for real 𝑥

𝑆 (𝐶(𝑥) − 𝔼𝑥𝑟∼ℙ𝐶(𝑥𝑟))  for generated 𝑥
,  (4) 

 

where 𝑆 is the activation function (sigmoid), 𝑥 is data, 𝐷𝑅(𝑥) 
is the discriminator, 𝐶(𝑥) is the output of the final layer 

without activation function, 𝑥𝑓 stands for faked images, 𝑥𝑟  – 

real images, 𝔼 is an expectation. 

E. MORPHEUS – DL TOOL FOR ANALYSIS OF 
ASTRONOMICAL IMAGES 

Surveying galaxies is a major instrument of observational 

astronomy. Ryan Hausen and Brant Robertson designed and 

described a deep learning framework for pixel-level analysis 

of astronomical image data – Morpheus [15]. This model 

helps astronomers to automatically classify galaxies by their 

shape or morphology. It implements deep learning methods 

in order to perform diverse astronomical tasks such as source 

detection, segmentation, and morphological classification 

which is carried out pixel-by-pixel through a semantic 

segmentation approach – a modified version of the computer 

vision algorithm.  

Technically speaking, Morpheus is implemented as a 

convolutional neural network (Figure 3) similar to the U-Net 

framework and designed through a combination of Python 3 

as the main tool and TensorFlow as a machine learning 

library. It is constructed from a series of so-called “blocks” 

that unify multiple reusable operations [15, 16]. 

 

 

Figure 3. Convolutional neural network. 

Represented by the Morpheus team pixel-by-pixel 

classification technique of astronomical images can be 

considered as an effective method of data analysis with wide 

applicability provided that suitable training datasets are 

available. The framework showed promising results with 

different datasets. As a performance assessment tool, 

CANDELS HLF and 3D-HST data were used, and Morpheus 

demonstrated a strong capability for morphological 

classification and object detection. 

F. GAN & DEVELOPING NEW MOLECULES 

Zhavoronkov et al. described the process of developing new 

molecules that lasted only 21 days using artificial 

intelligence and GAN; the molecules have been successfully 

tested in mice. Customized and proprietary data were used 
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as training and test datasets. The described approach has 

successfully passed experimental validation. The cost of the 

method is only a small fraction of the cost associated with 

the traditional approach to conventional drug discovery [17]. 

The newly developed deep generative model GENTRL 

(generative tensorial reinforcement learning) showed 

successful results in terms of de novo small-molecule design; 

it was applied as a system for discovering potent inhibitors 

of discoidin domain receptor 1 (DDR1), molecules that are 

involved in the regulation of cell functions and related to 

fibrosis and other diseases. It is anticipated that this method 

can be improved further as a perspective approach to identify 

drug candidates. 

It was also reported that GANs are able to successfully 

design novel molecules for different inflammation-, fibrosis-

, and cancer-inducing protein targets [18]. During this work, 

two conditional GANs were stacked as one functional deep 

learning chain (conditional GANs and Wasserstein GAN 

with gradient penalty (WGAN-GP)) in order to achieve 

experimental expectations: the second network improved the 

results of the first one (stage 2 and stage 1). The following 

equations represent loss functions for the two stages 

mentioned above (stage 1 and stage 2 respectively, equations 

5–8) [18]: 

 

        

ℒ𝐷0 = 𝔼𝑥∼𝑝real 
[−𝐷0(𝑥)]

+𝔼𝑧∼𝑝𝑧,𝑐∼𝑝real 
[𝐷0(𝐺0(𝑧, 𝑐))]

+𝜆𝔼𝑥∼𝑝𝑥
[(∥∥∇𝑥𝐷0(�̂�)2 − 1∥∥)2]

,          (5) 

 

 
ℒ𝐺0 = 𝔼𝑧∼𝑝𝑧,𝑐∼𝑝real 

[−𝐷0(𝐺0(𝑧, 𝑐)) − 𝛼log(𝑓0(𝐺0(𝑧, 𝑐), 𝑐))]
,      (6) 

 

where the generator is conditioned by a variable 𝑐  – 𝐺0(𝑧, 𝑐), 
𝐺 and 𝐷 are generator and discriminator respectively, 𝑧 is a 

random noise vector sampled from (𝑝𝑧), 𝑥 is data (𝑥 and 𝑐 

also represent a molecule representation and a gene 

expression signature), 𝑝real – real data distribution, 𝑓0 is a 

function that represents a neural network and measures the 

probability of a gene expression signature, 𝜆 and 𝛼 are 

regularization parameters; 

 

                 

ℒ𝐷1
= 𝔼𝑥∼𝑝real 

[−𝐷1(𝑥)]

+𝔼𝑠0∼𝑝𝐺0 ,𝑐∼𝑝real 
[𝐷1(𝐺1(𝑠0, 𝑐))]

+𝜆𝔼𝑥∼𝑝�̂�
[(∥∥∇𝑥𝐷1(�̂�)∥∥2 − 1)

2
]

,           (7) 

 

ℒ𝐺1
= 𝔼𝑠0∼𝑝𝐺0 ,𝑐∼𝑝real 

 

[−𝐷1(𝐺1(𝑠0, 𝑐)) − 𝛼log(𝑓1(𝐺1(𝑠0, 𝑐), 𝑐))], (8) 

 

where (𝐺1(𝑠0, 𝑐)) is the generator, (𝐷1(𝑥)) is the 

discriminator, 𝐺1 takes the output of 𝐺0(𝑠0 = 𝐺0(𝑧, 𝑐)) and 

the gene expression signature (𝑐) as an input (instead of 

random noise). 

G. GANS IN DISCOVERING NEW MATERIALS & 
PREDICTING CRYSTAL STRUCTURE 

The combined techniques of machine learning and GAN 

have confirmed their applied effectiveness in discovering 

new stable materials and predicting their crystal structure, 

which was described by Schmidt et al. [19]. A similar 

method called CrystalGAN was proposed by Asma Nouira et 

al., which made it possible to identify cross-domain 

connections in real data and to create new crystal structures. 

The proposed approach has demonstrated that it can 

efficiently integrate knowledge sets provided by human 

experts [20]. The GAN model showed its capability to 

generate new solid crystallographic structures.  

CrystalGAN was able to successfully identify cross-

domain connections in real data and generate novel 

structures. The model can be considered as the first GAN that 

has been explicitly designed to generate scientific data in 

materials science. CrystalGAN showed promising results 

and coped with the challenging task of discovering novel 

materials for hydrogen storage. Diverse GAN architectures 

are currently being studied in order to receive data of even 

higher complexity (compounds that consist of four or five 

chemical elements). It is important to stress that CrystalGAN 

as a general model that can be effectively adapted to any 

scientific task [20]. 

H. DEEP LEARNING FOR DEEPFAKES CREATION AND 
DETECTION 

Deepfakes pose a serious threat to a person’s personal safety 

since fabricated media data can be used to discredit a person 

by damaging their reputation (fake pornography, fake news, 

fraud, hoaxes, etc); they can provoke political instability, 

trigger violence, or even a war conflict.  

Deepfakes are usually created with a special type of 

neural network that is called an autoencoder that studies 

effective information codings in an unsupervised way. Using 

the encoder-decoder chain the method allows replacing the 

face of one person with another (in video or photograph; for 

instance, Reface and DeepNude applications).  

One of the powerful tools that enhance the capabilities of 

deepfakes is a generative adversarial network (GAN). A 

GAN trains a decoder (generator) and a discriminator in an 

adversarial interplay that makes fabricated data difficult to 

identify since two networks are consecutively evolving. As 

soon as the deepfake is identified, the system will 

immediately correct the defect and its further detection will 

be difficult. Due to the increasing quality of deepfake 

samples, detection methods also need to be improved. It has 

been suggested to make a benchmark data set of deepfakes 

that will help in developing effective detection methods [21].  

This should simplify the process of training detection 

algorithms that require a massive training set. To better 

understand the possible methods of countering fakes, it is 

highly important to thoroughly study GANs. One of the 

perspective methods suggests detecting deepfakes by 

analyzing convolutional traces [22]. The approach is based 

on examining digital “fingerprints” to discriminate generated 

images and distinguish them from real photographic data. 
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I. GANS IN BIOMEDICAL INFORMATICS 

Deep learning and GAN methods are actively used in 

medical imaging (X-ray radiography, magnetic resonance 

imaging, positron emission tomography, etc.) as a powerful 

tool that allows health-care experts and radiologists to detect 

serious medical conditions and diseases at early stages with 

a high percentage of accuracy.  

Since image data for many diseases are scarce, there is an 

urgent need for additional sources of information for training 

models. When there are not enough images for model 

training, GANs can generate high-quality samples that can 

be successfully applied as a solution in medical image 

analysis [23]. CycleGAN utilizes a cycle sequence loss to 

ensure model learning without paired data.  

Thus, it can map from one domain (A in Figure 4) to 

another (B in Figure 4) without pairwise alignments between 

the source and target domain [24]. 

Wolterink et al. [25] described an application of Cycle-

GAN in the radiotherapy treatment planning to CT and MRI 

images of patients with brain tumors. 

 

 

Figure 4. CycleGAN schematics. 

Results demonstrate that Cycle-GAN outperforms a 

conventional single GAN trained with paired images. Li et 

al. [26] applied the GAN approach to predicting the 

possibility of whether a patient has a rare disease or not; the 

prediction accuracy was 5% higher compared to standard 

methods. Recent studies also suggest that GANs can be 

engaged in solving the problem of lack of data in 

bioinformatics due to the capability of the network to 

generate high-quality data samples [27].  

Models trained on small datasets demonstrate high bias, 

tend to overfit, and produce inaccurate predictions in terms 

of classification tasks.  

J. GANS FOR CREATING FONT EXAMPLES 

GAN can be also effective as a tool for creating new fonts 

and unique hand-written symbols like digits and letters. A 

standard GAN method in a combination with ADAM 

optimizer was tested on the MNIST dataset. The experiment 

conducted by the authors showed the potential of the said 

approach to generate high-quality graphic samples of hand-

written symbols. The overwhelming majority of obtained 

symbols looked similar to real digits, they were 

distinguishable by a sufficient level of clarity, structure, 

shape, and there was no significant graphic noise (Fig. 5) 

[28].  

 

 

Figure 5. Samples generated by a GAN based on the 

MNIST dataset. 

To obtain results of even higher quality the GAN 

parameters can be experimentally readjusted. 

It should also be noted that a similar architecture can be 

used in typography to generate new font models, as well as 

in applied forensics to generate new training handwritten 

samples that can be used as part of datasets for training 

handwriting recognition and identification systems.  

More examples can be reviewed and analyzed, but it is 

barely possible to list them all. The approaches reviewed 

above and summarized in Table 1 are practical confirmation 

of the high efficiency of using deep learning and generative 

adversarial neural networks in a wide range of applied areas 

in the context of sample and image data processing. 

Alternatively, other generative models can be considered 

for the similar range of tasks: 

• Variational Autoencoders (VAE) have density 

estimation, invertible, stable training, better 

diversity, but (a) the quality of the synthesized 

samples is much lower than GANs can produce and 

(b) slow learning speed. 

• Autoregressive Model – more diverse samples, but 

learning requires supervision. 

• Flow Models – lower quality samples. 

• Hybrid Models – less stable. 

GANs are still the best option when realistic generation 

is the main goal. 
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Table 1. Peculiarities and possible modifications of the reviewed heuristics. 

Application Area Technology/Models Specificity Possible Modification 

Methods 
 

 

 

Observational Astronomy 

GAN and DL for recovering 

features in galaxy images 

and photometric redshift 

estimation; Fader network, 

Spatial GAN (SGAN), 

Morpheus. 

An important component of 

cosmological research. 

Limited capacity of the 

training sets; domain know-

ledge oriented; generated 

image samples depend on 

the training datasets. 

Applying synthesized 

samples for enlarging 

existing data-sets; dropout 

and random forest methods 

to avoid overfitting; 

architecture optimization. 

 

 

Health Care/Longevity 

DL and GAN; Generative 

Tensorial Reinforcement 

Learning (GENTRL); 

Wasserstein GAN (WGAN). 

A highly effective approach 

with promising results; 

further applications of the 

method and its limitations 

are being actively studied. 

Potentially more effective 

combinations of models re-

quire further research. 

 

 

Materials Science 

ML/DL; GAN; Crystal-

GAN. 

A successful approach for 

the design of new materials. 

Cross-domain knowledge 

bases in physics and chem-

istry are needed for further 

optimization and designing 

even more productive 

models. 

 

 

Deep Fake 

Standard GANs, autoenco-

der network. 

A high degree of influence 

on the social factor and pub-

lic safety. 

Further improvement of 

detection methods; creation 

of a benchmark data set of 

deepfakes; convolutional 

trace identification appro-

aches. 

 

 

 

 

Bioinformatics 

DL and GAN; CycleGAN. The method maps one 

domain to another without 

pairwise alignments bet-

ween the source and target 

do-main. The suggested 

approach can help to solve 

the problem of lack of data 

in bioinformatics. 

Optimizing the architecture, 

examining the possibility of 

adding Gaussian noise bet-

ween loops and analyzing its 

impact on system perfor-

mance.  

 

 

Typography and 

Handwritten Samples 

GAN; Deep Convolution 

GANs. 

Requires high-quality data-

sets and sophisticated algo-

rithmic optimization me-

thods. 

Network parameters re-

adjustment; normalizing a 

number of training epochs; 

applying additional combi-

nations of optimization 

techniques. 

 

III. ADVANCED APPROACHES FOR IMPROVING DEEP 
LEARNING AND GANS APPLIED EFFICIENCY 

Given the above descriptions, there are several possible ways 

that could help to improve the effectiveness of all these 

approaches for various scientific fields. 

A. IMPROVING PERFORMANCE USING DATA 

As for improving performance with data, it needs to be 

stressed that the more training data collected, the better the 

performance since this directly affects the quality of the deep 

learning models used. The efficiency of any algorithm loses 

its value if the amount of data is insufficient for full-fledged 

training. 

If there is not enough data in the training set, it is 

advisable to consider artificial data generation as an option. 

As it was mentioned by Schawinski et al. [7], the main 

constraint of their approach was the limited capacity of the 

available training set. Fabricated images generated by GANs 

may be considered as a possible solution for this issue. In 

other words, special GAN architectures can assist other 

GANs to improve their performance and results. When it 

comes to image data, we can either synthesize new images 

or randomly modify samples of existing images; we can also 

use random rotation or shifting images or adding simulated 

noise. The principle of data augmentation applies to other 

data types as well (vectors of numbers, text, etc). 

Lack of training data can result in overfitting, thus the 

best way to avoid it is to provide a deep neural network with 

increased quantity of quality training data. Generative 

modeling with GANs can fill the gap by reinforcing smaller 

datasets with new synthesized high-quality images. The deep 

convolutional GAN architecture (DCGAN) is capable of 

creating photorealistic graphical samples that accurately 
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correspond to the feature distributions of real galaxies in 

terms of statistical estimation [29]. It is worth noticing, 

though, that these are limited by the accuracy of the 

probability density estimates. 

Levi Fussell and Ben Moews experimentally proved that 

StackGAN can be applied as a second-stage architecture and 

form a combination system with DCGAN in order to 

synthesize fabricated galaxy images with higher resolutions, 

avoiding the obstructions that DCGAN models experience 

with such resolutions [30, 31].  

Data rescaling in the context of the applied activation 

functions also plays an important role. It’s sometimes useful 

to normalize data values and rescale them; between 0 and 1 

if it comes to sigmoid activation functions, between 0 and 

infinity if it’s rectified linear unit (ReLU), -1 and 1 if it’s 

hyperbolic tangent (tanh), for instance. This rescaling 

principle can be applied to other activation functions as well. 

B. ALGORITHMIC APPROACH 

 

Figure 6. Structure of interactions between Generator and 

Discriminator networks in GAN. 

As for the algorithmic approach, if GANs mainly use the 

original algorithm designed by Goodfellow et al. (Figure 6) 

and its modifications, other deep learning algorithms use 

diverse models and approaches that vary from case to case 

[9]. 

Equation 9 represents a mathematical description of 

GAN as a variation of the minimax two-player game [9]: 

 

𝑚𝑖𝑛
𝐺

 𝑚𝑎𝑥
𝐷

 𝑉(𝐷, 𝐺) = 𝔼𝒙∼𝑝data (𝒙)
[log 𝐷(𝒙)] +

𝔼𝒛∼𝑝𝒛(𝒛)[log(1 − 𝐷(𝐺(𝒛)))],              (9) 

 

where 𝐺 is the generator network; 𝐷 is the discriminator 

network; 𝑥 is a sample of real data; 𝑝𝑧(𝑧) – is a prior on input 

noise variables; 𝑧 is noise;  𝐷(𝑥) is the probability that 𝑥 

actually is from the data rather than from the generator; 𝐺(𝑧) 
is the generator output; 𝔼 is prediction (expectation), the first 

part represents the discriminator’s predictions on the real 

data, the second one – the discriminator’s predictions on the 

fake/generated data; 𝑉(𝐷, 𝐺) is the value function of 

discriminator and generator in the two-player minimax 

game. 

Each time proper algorithmic diagnostics should be 

applied to the desired deep learning model. All examples 

reviewed in the paper can be experimentally modified in 

terms of weight configuration, network topology, types of 

activation functions, learning rate, batches, and number of 

epochs. The network topology depends on the task at hand. 

Since at the moment it is generally accepted that there are no 

unified rules regarding how many layers or how many 

neurons are needed for a particular configuration of a neural 

network, these parameters are selected experimentally. 

C. HYBRID METHODS AND OPTIMIZATION 

The new technique proposed by Karras et al. allows training 

generative adversarial networks with limited data. They have 

suggested methods of adaptive discriminator augmentation 

in GANs and described the following overfitting heuristics 

[32]: 

 

𝑟𝑣 =
𝔼[𝐷train ]−𝔼[𝐷validation ]

𝔼[𝐷train ]−𝔼[𝐷generated ]
𝑟𝑡 = 𝔼[sign(𝐷train )], (10) 

 

where the discriminator outputs are denoted by 𝐷𝑡𝑟𝑎𝑖𝑛  for the 

training set, 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 for the validation set, and 𝐷𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑  

for the generated images, 𝔼 denotes their mean over 𝑁 

consecutive minibatches. During the experiment, 𝑁 was 

equal to 4, which corresponds to 4 × 64 = 256 images. For 

both parts of heuristics, 𝑟 = 0 stands for no overfitting and 

𝑟 = 1 implies complete overfitting. The goal of the 

experiment was to adjust the augmentation probability 𝑝 so 

that the selected heuristic fits an appropriate target value. 

Two heuristic units: 𝑟𝑣  signifies the output for a validation 

set relative to the training set and generated images, 𝑟𝑡 
evaluates the fraction of the training set that gets positive 

discriminator outputs [32]. Additional augmentation and 

regularization approaches in the GAN context have been 

suggested by Cubuk et al. (September 2019) and Zhang et al. 

(February 2020) [33, 34]. 

Recent research shows that a combination of multiple 

GANs can create generated data with higher quality 

compared to a conventional single GAN [32]. It should also 

be noted that sometimes it happens that due to oversimplified 

loss function GANs do not learn the way they are expected 

to (mode collapse, vanishing gradients, convergence). This 

problem remains one of the active areas of research at the 

moment. 

Sophisticated regularization methods, such as dropout 

(equation 11), can also help to avoid overfitting in neural 

networks [35]: 

 

                      ŵ𝑗 = {
w𝑗 ,      with 𝑃(𝑐)

0,      otherwise 
,              (11) 

 

where P(c) is the probability of c (stands for “keeping a 

weight” factor) to keep a row in the weight matrix, w𝑗 is a 

real row in the weight matrix before dropout, ŵ𝑗 is a diluted 

row in the weight matrix. Dropout randomly omits (or “drops 

out”) neurons of a neural network (both hidden and visible) 

during the training process. It should be noted that zeroing 

out the node does not impact the end result. 

K-fold cross-validation is another method that can be 

applied to a model in order to avoid overfitting. Data is 
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separated into K randomly-assigned fragments where one 

fragment is earmarked as test data. The remaining combined 

K-1 (minus one) fragments are used for training and after 

that, results need to be evaluated with the test set. This cycle 

then reiterates for each fragment and the average of the K r-

squared scores is calculated, or the results displayed in a box 

plot to give the median value and identify outliers. 

Another possible way to improve the results obtained 

using deep learning methods is algorithmic model rotation. 

To solve the same problem, completely different types of 

neural networks and methods of their modification can be 

applied. Restarts indicate the impact of local minima and 

saddle points in the loss function. 

Experimenting with linear and non-linear methods 

(logistic regression, polynomial regression, and multiple 

regression) along with tree methods like gradient boosting, 

classification and regression trees, and random forest 

decreases variance and could give different results in terms 

of productivity. For classification and regression analysis in 

neural networks, support-vector networks and k-nearest 

neighbors algorithms also demonstrate high-level efficiency. 

Sometimes, to obtain more efficient results, it makes sense 

to resort to the hybridization of models, combining the 

following approaches with each other: learning vector 

quantization, Boltzmann machines, multilayer perceptron, 

convolutional neural network, long short-term memory 

architecture, competitive networks such as GANs, 

autoencoder networks, deep stacking networks. The list of 

architectures given is only illustrative since the number of all 

possible combinations increases exponentially. 

Performance can be also improved by involving 

algorithms for gradient-based optimization such as 

RMSProp, AdaGrad, Momentum, Adagrad, Adadelta, and 

ADAM. Upon experimental evaluation, ADAM 

demonstrated strong results with logistic regression, multi-

layer neural networks, convolutional neural networks, and 

performed equal or better than RMSProp, regardless of 

hyper-parameter settings [36]. Using ADAM as an example, 

and considering it takes its name from “adaptive moment 

estimation,” we can see that this method utilizes evaluations 

of first and second moments of gradient adjusting the 

learning rate for each weight parameter of the neural 

network. The moment is a numerical characteristic of the 

distribution of a given random variable (expected value of 

the variable to the n-th power, equation 12): 

 

                              𝑀𝑛 = 𝐸[𝑉𝑟𝑎𝑛.
𝑛],                            (12) 

 

where 𝑀 is the moment, 𝐸 is the expected value of the 

variable, 𝑉𝑟𝑎𝑛. is a random variable. 

Deep learning optimization models are still an open 

domain and still require in-depth research, both in terms of 

mathematical groundings and in terms of software and 

hardware implementation. 

IV. CONCLUSIONS 

Since the amount of information is constantly increasing, 

scientists need modern and efficient tools to examine and 

analyze the data they receive. Nowadays researchers have 

unprecedented access to advanced AI tools for gathering, 

retrieving, processing, and recovering images and statistical 

data [37, 38, 39]. It is certain that machine learning can 

process and analyze information much faster than humans or 

other computational methods, furthermore, it can 

comprehend data patterns and liaisons that we do not even 

recognize, e.g., it may detect diverse types of galaxies before 

scientists know they exist.  

In the article, the authors analyze the types of modern 

GAN architectures and existing approaches to their design, 

as well as the main advantages and prospects for widespread 

implementation of GAN and deep learning (DL) for solving 

topical problems of artificial intelligence. The above analysis 

of successful cases illustrates and confirms the high 

efficiency of GANs and DL in astronomy, molecular 

biology, materials science, bioinformatics, handwriting 

recognition, and deepfake detection. The authors provide an 

analysis and offer proposals for the development of 

advanced approaches in terms of design and implementation 

of GANs and DL. In the future, the authors plan to develop 

software for the implementation of GAN and DL based on 

the discussed advanced approaches. 

Processing instrumental images using artificial neural 

networks can accelerate further research and help in 

reconstructing imaging data even for nonstandard and 

unstudied phenomena. GANs can effectively remove noise 

and provide as clear of an image as possible due to their 

ability to recover graphical data that have damaged or 

missing pixels, or unwanted instrumental artifacts. Thus, the 

machine learning methods and GANs should be considered 

as the most promising assistive technologies for science as a 

whole. 

GAN is one of the relatively new DL technologies 

(2014), requires a thorough research and analysis, 

significantly affects various aspects of scientific and 

technological development (creation of new drugs, space 

exploration) and socio-political life including Deep Fake 

problem (photo, video, audio). 

As for drawbacks and limitations, it is worth noticing that 

in order to train a machine learning system we need a lot of 

labeled and preprocessed information. Moreover, until 

recently, the scientific community simply had no data about 

some substantial aspects that are important for preparing 

effective training sets. In addition, neural networks are being 

considered as a kind of black box: researchers do not always 

understand exactly how artificial neural networks operate, 

especially when it comes to complex architectures with 

many hidden layers of neurons. Using tools without a proper 

level of understanding of how they work is a matter of 

concern among scientists. 

Nevertheless, DL systems continue contributing to 

progress across a range of different scientific fields [40, 41], 

and therefore, the prospects for the further use of machine 

learning in applied scientific research, as well as methods for 

its improving and optimizing, should continue to be 
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comprehensively studied. Proper technological unification 

and combination of research efforts can lead to revolutionary 

results. 

The main task of the article is an in-depth scientific 

analysis of current practical approaches in terms of 

application of deep learning methods, including generative 

models, in the most important spheres of human activity, 

because today DL and GANs still need thorough study and 

research: theoretical basis, areas and limits of application, 

security and safety. Awareness of the scientific community 

in modern methods of artificial intelligence and the need for 

access to pervasive analytical materials are among the key 

aspects influencing the speed, intensity, and novelty of 

research. The article analyzes innovative approaches in DL 

and GANs, provides an integral assessment of their 

effectiveness, and offers practical and theoretical 

suggestions for improvement. 

It is expected that modern deep learning technologies will 

make a significant contribution to science and the 

development of research methodology, provided that proper 

convergence between the vast majority of scientific fields is 

achieved. 
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